Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674094

RESUMO

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Gengiva , Periodontite , Porphyromonas gingivalis , Barreira Hematoencefálica/metabolismo , Animais , Humanos , Camundongos , Vesículas Extracelulares/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/patologia , Gengiva/metabolismo , Gengiva/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Exossomos/metabolismo , Feminino , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/metabolismo
2.
Antioxidants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670526

RESUMO

Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.

3.
Sci Rep ; 10(1): 7468, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366945

RESUMO

Recent epidemiological  studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.


Assuntos
Autofagossomos , Autofagia , Infecções por Bacteroidaceae , Citosol , Porphyromonas gingivalis , Epitélio Pigmentado da Retina , Vacúolos , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Autofagossomos/ultraestrutura , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Linhagem Celular , Citosol/metabolismo , Citosol/microbiologia , Citosol/ultraestrutura , Humanos , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/microbiologia , Epitélio Pigmentado da Retina/ultraestrutura , Vacúolos/microbiologia , Vacúolos/patologia , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...